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Absfrart We mamine the low-energy limit of the nonlinear Dirac equation (NLDE) in 1 + I 
dimensions with a Lorentz scalar self-interaction. Unlike the nonlinear Schrodinger equation 
(NLSE), which is integrable, the NLDE is known to exhibit rich dynamics of the soliton- 
soliton collision when the relative speed of the solitons is small. The NLDE is intrinsically 
different from~the NLSE even when the energy involved is small. When it is modified by 
adding a specific correction term, however, the NLSE well reproduces the complex features 
of the soliton-soliton collision described by the NLDE. 

1. Introduction 

In quantum mechanics the Dirac equation is reduced to the Schrodinger equation in 
the non-relativistic limit. Is there a similar relationship between the nonlinear Dirac 
equation (NLDE) and the nonlinear SchrBdinger equation (NLSE)? This is the question 
that motivated this paper. Here it is understood that the mass that appears in these 
equations is finite. We confine ourselves to 1 + 1 dimensions throughout. There are two 
types of the NLDE, depending on the self-interaction which can be a Lorentz scalar or 
a vector. We focus on the NLDE with the Lorentz scalar self-interaction, which is more 
complex and interesting. By the NLDE we mean this equation in the following unless 
otherwise we indicate. 

Long ago Alvarez and Carreras carried out numerical experiments for the NLDE 
and found solutions which exhibit rich dynamics of soliton-soliton collision [ 11. In 
particular, two solitons can collide to form a quasi-bound state which slowly decays. 
Interestingly, such complexities occur only when the relative speed of the incident 
solitons is below a certain critical value. As Alvarez and Carreras pointed out, the 
intricacy of their results indicates that the NLDE is a non-integrable equation. Let us 
add that the NLDE is integrable if the mass is zero [2]. On the other hand, the NLSE is 
one of the well known integrable nonlinear equations (e.g. see [3J). If the NLDE is non- 
integrable, the NLDE and NLSE are intrinsically different even in the low-energy limit. 
Then the answer to the question raised in the preceding paragraph is negative. 

The soliton-soliton collision that fhe NLSE describes is simple [3]. The solitons come 
out of collision with exactly the same shapes and the same speeds with which they 
entered. This is so for any relative speed of the solitons. This salient feature characterizes 
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the soliton in its strict definition. The NLSE has another interesting type of’solution 
which describes a situation in which two solitons are bound. The two solitons keep 
oscillating against each other with constant period and amplitude. This bound state is 
stable [4]. As was found by Alvarez and Carreras, the soliton-soliton collision of the 
NLDE for small speeds is very different from that of the NLSE. We use the word ‘solitons’ 
in the NLDE case even though complex inelastic processes can arise. The NLDE also has 
solutions which represent soliton-soliton bound states, but these states are unstable 
and decay [I] .  

The next question that naturally arises is: what is the non-relativistic limit of the 
NLDE, if it is not the NLSE? The purpose of this paper is to find an answer to this 
question. We show that the NLSE with a specific correction term, which we call the 
modified NLSE in the following, does reproduce the complex features of the NLDE. The 
correctioh term is an internal perturbation rather than an external one. Apart from the 
interest in the NLDE itself, which can be thought of as a model of hadrons, the study 
of various perturbations to the NLSE may be relevant in applications of the NLSE in 
diverse fields of physics [5 ] .  

In section 2 we present a heuristic method of reducing the NLDE to the modified 
NLSE. In section 3 we discuss some general features of the modified NLSE. In section 4 
we solve the modified NLSE numerically and examine the soliton-soliton collision. The 
results are discussed in section 5. There are three appendices. In appendix 1 we briefly 
discuss the NLDE with the self-interaction of the vector type, and in appendices 2 and 
3 we give details of some of the formulae of the main text. 

F M Toyarna ef a1 

2. Non-relativistic reduction of the nonlinear Dirac equation 

The NLDE that we examine is 

iw,= -ia yX +Pmy -g(v+Pw)w (2.1) 
where y is a two component spinor, y,=ay//af, y,=ay/ax, M (>O) is the ‘mass’ and 
g is a dimensionless coupling constant which we assume to be positive. Throughout 
this paper we use natural units such that c= ti= 1. For the 2 x 2 Dirac matrices a and 
P, we take a = CT,, and P = CT: where the os are the usual Pauli matrices. Let y be 

Then (2.1) becomes 

iu,= - U, -g( 1 ~ 1 ’ -  I ul’)u 

iu,= U,- [w -g(l uIz - I v l ’ ) ] ~ .  
(2.3) 

(2.4) 
We assume that m is much larger than the interaction term involved and rewrite 

(2.4) as 

u,-iv, 
U =  

2m -g(luI2 - I U13 

(2.5) 
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We furthermore assume fhat (ul<<(u( and Iu,lc<(u,(. Then (2.5) can be reduced to 

which we substitute into (2.3) to find 

(2.7) 

We admit that the non-relativistic reduction given above is only heuristic because the 
validity of the assumption of Iu,I <<lu,l is not clear. Nevertheless, let us proceed. 

3. Modified nonlinear Schrtidinger equation 

The NLSE that we have mentioned several times already reads as 

Rewriting U as y in (2.7), we now propose to examine the following modified NLSE as 
the non-relativistic reduction of the NLDE (2.1): 

(3.2) 

The last term is the correction added to the NLSE. It is understood that y is normalized 
asJrmdxiy(x,t)lZ=l.  

Let us discuss some general features of (3.2). The equation can be identified with 
the Euler-Lagrange equation for the Lagrangian density 

(3.3) 

where the last term is the correction. Suppose one starts with the NLSE (3.1) and one 
tries to modify it by adding a term which is real and bilinear with respect to y and/or 
y" and also with respect to yx and/or y.?. There are a few such possibilities, I ~ ~ I V . ~ ~ ~ ,  
[(y*yX)*+c.c.], i[(y*yJ*-c.c], etc, where C.C. stands for the complex conjugate of 
the preceding term. The correction term of (3.3) is the simplest choice. 

The correction term of Z is negative, which means that the correction is repulsive. 
This is consistent with the following aspect regarding the NLSE versus the NLDE. Each 
of these equations has a single-soliton solution. We summarize the single-soliton solu- 
tion of the NLSE in the next section. For the NLDE, see [6]. For the same value of g 
the soliton-binding energy is greater for the NLSE than for the NLDE. This means that 
the relativistic effect on the binding is repulsive. 

The (. . .) of the correction term of (3.2) can be rewritten as 

I v12vx.+ w*(wJ2= w*(wvx)x= -(v*PvP)v 

(Y*PVP)+ = P l * P v  = (Y*P -iYmyP- iw.d # yr*PyrP. 

(3.4) 

(3.5) 

wherep=-id/ax. The operator (y*pyp) is not Hermitian in the sense that 
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It is Hermitian, however, in the sense that 
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m m m 

v*(v*pvp)tvdx= ~ Y V ' P Y P ) ~  dx=2 I dxlvv.r12. (3.6) L I-, -m 

Here it is understood that y(x, L )  + 0 as x + f CO for any fixed value of 1. 
The 'charge' defined by 

(3.7) 

remains t-independent. This is related to the invariance of 9 with respect to the phase 
transformation y -t e'*y. The charge conservation is necessary for having soliton solu- 
tions. We define the energy E of the system by 

m 

E= j-, 2 dx 

where the Hamiltonian density 8 is given by 

1 2 g  g %=-I WXI - - I  2 ~ 1 4 + ~  4m Ivvxl2. 2m (3.9) 

The energy E is also conserved. 
Suppose yl is in the form of a wave packet and define its centre of mass (or charge) 

by 
m 

x&)= p ( x ,  t)xdx. (3.10) sm 
Then it can be shown that 

(3.11) 

(3.12) 

Some details of the derivation of these equations are given in appendix 2. 
Equation (3.12) i s  similar to but different from the formula known by the name of 

Ehrenfest's theorem in quantum mechanics [7]. This difference did not surprise us 
because we were expecting some departure from the non-relativistic relation between 
velocity and momentum. Because there is no external force acting on the system we 
expect that d2xc/dlZ=0 holds, which means that the wave packet moves with a constant 
speed. This is not obvious from (3.12). However, if p and I vXl2 are both even functions 
with respect to the centre of mass of the wave packet, the integral of (3.12) vanishes. 
This is indeed the case for the one-soliton solution that we found numerically. 

4. Solitonsoliton collision 

Unlike for (3.1) we have not been able to solve (3.2) analytically. Therefore we have 
solved (3.2) numerically by means of the standard explicit finite difference method. 
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Before examining the solutions of (3.2), however, it is convenient to summarize the 
single-soliton solution of the NLSE (3.1). 

Among the many interesting solutions of the NLSE (3.1). the~simplest one is the 
single-soliton solution given by 

w(x, t )  =f(x, t ; 0) 
1/2 =(:) sech[h-(x- ut)] exp{iimux- (Eo+  lm02)tl). (4.1) 

This is normalized as Jl",lf(x, I; v)l2dx=l. When v=O,f (x ,  t ; O )  is the bound state 
solution of the t-independent equation 

The constants in (4.1) and (4.2) are related by 

K Z  
Eo=--. 

1 K=smg 
2nz 

In solving (3.2) we set up the initial condition in terms of ~ ( x ,  t )  of (4.1). In all the 
numerical illustrations in this paper we take m= 1, g= 1 and K = &  

Now let us turn to the modified NLSE (3.2). Before discussing the soliton-soliton 
collision, we have to make sure that the equation allows single-soliton solutions. 
Figure 1 shows the charge density p(x ,  t )  =) y(x, t)12, which we obtained by starting 
with 

W ( X ,  t= 0) =f(x, 0; U) (4.4) 

wheref(x, t ;  U) is the single-soliton solution (at t = O )  of (4.1). For U, we took u=O.l. 
If there is no correction term, the I& t )  that starts withf(x, 0; U) at t = O  is exactly 
given byf(x, t ;  U). In the presence of the correction term, the y(x, t )  for t > O  will be 
different from f(x, f ;  U). We found, however, that I&, t )  quickly settles down to a 
stationary form which is close to the unperturbed wavefunctionf(x, t ;  U). The solution 
moves with a constant speed, which is consistent with d2x,/dt2=0. The speed of the 
soliton shown in figure 1 is about 0.5% larger than the input value of U. This is because 

4 12.5 

t 

n 
Figure 1. The density P(X,  r)=l v ( x ,  1)l' of the single-soliton solu-~ ~ 

tion o f t h e m o d i f i e d ~ ~ s ~  (3.2);m=l,g=I,  k=tandu=O.l. 
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Figure 2. Soliton-soliton colIision of the modified 
NLSE (3,2);m=L,g=l,  K=iandIT=0.06. 

Figure 3. Soliton-soliton collision of the modified 
NLSE (3.2); m= 1. g = l  and u=O.O5. 

the initial wavefunctionf(x, f ; v )  we used is not an exact solution of (3.2). We confirmed 
such single-soliton solutions for various input values of U. In appendix 3 we discuss the 
solution of the stationary state. 

Let us now examine the soliton-soliton collision. For the initial condition we assume 

w(x, t=O)  =f(x-xo ,  0; - v )  + f ( x +  xo. 0; U) (4.5) 
which is a superposition of two (unperturbed) wave packets placed at x=fxo.  It is 
understood that KX+> 1 so that the overlap of the two wave packets is negligible. Then 
~ ( x ,  0) is normalized as J:m 1 ~ ( x ,  0)12dx=2, and so is ~ ( x ,  I). In the absence of the 
correction term the y~ started with (4.5) develops into an analytically known two-soliton 
solution of the NLSE (3.1). That solution describes the elastic collision process for two 
solitons with initial velocities fu. In contrast to that, the correction term that we 
introduced muses considerable complexity in the collision process. 

Figures 2 4  show the charge density p(x, t )  =I ~ ( x ,  t)lz for the three cases with v= 
0.06, 0.05 and 0.025. There seems to be a critical value U,, between 0.05 and 0.06, for 
the initial soliton speed U. For U >  U. (figure 2) the collision is elastic, whereas it becomes 

4 12.5 412.5 

t t 

n 0 - 
-25 25 -25 25 

X X 

Figure 4, Soliton-soliton collision of the modified 
~ ~ s ~ ( 3 . 2 ) ; m = I , g = I  and u=0.025. 

Figure 5. Soliton-soliton collision of the NLSE 
(3.1); m= I, g=O and u=0.025. 



The nonlinear Dirac equation 3 145 

2.05 

t 
U 1.g0 100 200 300 400 

t 
Figure 6. The charge density p(0, t )  at the Centre 
ofthe bound state of the modified NLSE (3.2). The 

Figure 7. The soliton charge Qdt )  of (4.6) of the 
modified NLSE (3.2). The parameters are the same 

parameters are the same as for figure 4. 

inelastic for u<u, (figures 3 and 4). The elastic collision is very similar to that of the 
NLSE (3.1) without the correction. The two solitons emerge from collision with the 
same shapes and speeds with which they entered. For U <  U, the two solitons get bound, 
and oscillate against each other. However, the period of oscillations gradually decreases 
in the course of time. Figure 5 is to be compared with figure 4. In these two figures the 
ys are subject to exactly the same initial condition but figure 5 shows the result for the 
NLSE (3.1). The difference between figures 4 and 5 is solely due to the correction term. 
For the accuracy of our calculations we have checked the conservation of charge Q 
and energy E, both of which are supposed to be t-independent. For the time intervals 
shown in’ all the figures, the error for Q is less than 0.3% while the error for E less than 

Let us examine the case of u=0.025 in more detail. Figure 6 shows the charge 
density at x=O, p(0, f ) ,  which oscillates as a function of t .  Let us define the charge 
carried (or contained) by the bound state by 

as for figure 4. 

0.6%. 

QdO= P(X, 0 dw. (4.6) 

This quantity depends on the range parameter r. Let us choose somewhat arbitrarily 
r=25. Figure 7 shows that &(t) gradually depreciates. This means that charge (and 
also energy) is dissipated. In the absence of the correction term such dissipation of 
course does not occur. In the preceding paragraph we said that inelastic~coUision occurs 
for the initial soliton speed ucv , .  By ‘inelastic’ we do not mean that the total energy 
E decreases, rather we mean that the energy contained in the solitons or their bound 
state decreases. In figure 7, &(O) is slightly larger than 2. This is because the two terms 
oh the right-hand side of (4.9, which we assume for the initial condition, have a slight 
overlap. 

Finally, figure 8 shows p(x, i) for the following situation. Imagine that thecorrection 
term is somehow tumed off soon after the two solitons have merged and formed a 
bound state. To be more explicit, let us make the coupling constant g for the correction 
term f-dependent by the substitution 

(4.7) 

where &= 165 and f ,=5.  We keep the unperturbed part unchanged. Thef(t) of (4.7) 
is tumed off at f = tc=  156, not abruptly but over a time interval of order t,. In figure 
8 the two solitons meet at 1-150. Up to t -165, figure 8 is practically identical with 
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412.5 

t 

0 
-25 25 

X 

~~ 

. 
Fiure 8. Stabilization of the bound state; m = l ,  g=l and v= 
0.25. The perturbation term has been modified as in (4.7). 

figure 4. Note that the oscillating bound state formed by the solitons becomes stable 
after the correction term is turned off .  The period of oscillations becomes constant. 

5. Discussion 

We have proposed a modified NLSE (3.2) as the non-relativistic reduction of the NLDE 
(2.1). The soliton-soliton collision described by the modified NLSE exhibits rich dynam- 
ics. In particular, when the relative speed of the incident solitons is below a critical 
value u., the merger of the two solitons results in a quasi-bound state which decays 
slowly. This formation of the quasi-bound state is strikingly similar to what Alvarez 
and Carreras found for the NLDE [I]. This justifies the non-relativistic reduction of the 
NLDE which we presented in section 2 in a heuristic manner. Alvarez and Carreras 
adopted interactions stronger than we assumed. In terms of our notation, their K is 
0.6-0.8 as compared with our ~ = 0 . 5 .  They found the quasi-bound state of solitons 
for ~60.06. This is consistent with our estimate that 0.056 u.<0.06. 

We noted in section 3 that the correction term of the modified NJSE is repulsive. It 
is interesting that this repulsive correction pulls two solitons into a bound state. This 
means that the net effect of the repulsion is somehow reduced when the two solitons 
are brought close to each other. We have also tried the following. Assume artificially 
that the g of -gl v12y of the unperturbed part and the g of the correction term are 
different. Denote these two gs by go and gl , respectively. Vary the value of gl of the 
correction term but keeping the go= 1 fixed. In this way we found that the complex 
soliton-soliton interaction is not peculiar to the special choice of gl=go. As gl is 
reduced, the effects of the correction term become weaker and the critical velocity U, 
becomes smaller. It seems, however, that U, remains finite as long as g, >O. If u,>O, 
the modified NLSE (3.2) is qualitatively different from the unperturbed NLSE (3.1) as 
far as the soliton-soliton interaction is concerned. In this sense, the effects of the 
correction term of the modified NLSE are not simply perturbative. 
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Appendix 1 

Let us'briefly discuss the NLDE with the self-interaction of the Lorentz vector type. This 
equation appears in the Thirring model of quantum field theory, and is known to be 
integrable 181. Let us call this equation the Thirring equation. Below (3.2) we discussed 
other possible forms of the perturbation term in the Lagrangian density. Instead of 
(g/4mz)I suppose we choose 

9 =+ [ ( Iy*yl,)Z + C.C.]. 
8m 

(Al.1) 

Then the NLSE is modified to 

(A1.2) iw,=-- 1 v.=-gIwI 2 g  W + ~ [ ~ ~ ~ ~ ~ + ~ I Y . ~ I ~ V I - ~ * ( W . ~ ) ~ I .  
2m 4m 

The above equation can be related to the Thirring equation 

iw, = - ia v, + pmw -g[w+y - (y'a v)a l  y (A1.3) 
in a manner similar to the manipulation done in section 2. 

We have examined soliton-soliton collision described by (A1.2) with the same values 
of the parameters and the same initial conditions as those for (3.2). We found no quasi- 
bound state of two solitons in this case. As far as we saw the soliton-soliton collision 
is always elastic irrespective of the incident relative speed of the solitons. This is consist- 
ent with the interpretation that (A1.2) is an approximation to the Thirring equation 
(A1.3) which is integrable [7]. 

Appendix 2 

Let us give some details of the derivation of (3.1 1) and (3.12). We start with 

i ( v*Aw) ,=  < w * A W  - ( W * A w )  ( A 2 4  
where ( . . . )= JZ- ( . . . ) dx, A = A ( x , p )  is an operator, and 

h=ho+hl (A2.2) 

(A2.3) 

The ho part of (A2.1) can be handled in the same way as in the usual calculations in 
quantum mechanics. The h, part requires special care because, as we pointed out below 
(3.4), hl is not Hermitian in the usual sense; ((hlW)*Ay>#(y*h:Ay/>. We found the 
following formula useful : 

< ~ * A h i  w>- ( ( h ~  v)*A w>=B [ ( w * A ' / * ( ~ w ) ~ )  - ((v*P)'wA W >  I. 

If A = x ,  ~ 

(A2.4) 
4m2 

~ W * x W * ( P w ) 2 ) = - ( w * 2 X ( Y Y . ~ ~ ~ ~ = ( P ( ~ I w . ~ 1 2 +  ur*wx)> W . 5 )  
((s*P)2vxY>=- ( W * ( w * ( x w Z ) , ) . ~ ) = ( w . ~ Y * ( x w 2 ~ . ~ )  

=(P(2x1wx12+ w:ur)>. (A2.6) 
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Thus we obtain 

<Y*W*PYPV> - <(Y*Pf2WXY> = <P(w*w.v- w:w)> = 2(PY* lJ  (A2.7) 

which yields the term proportional to g of (3.1 I). We have done integration by parts 
liberally. 

If A =p, (A2.4) immediately shows that the part of  pi), due to h,  vanishes. It 
is also easy to see that the ho part of (yPpw) ,  is zero. The right-hand side of (3.12) is 
due to the time derivative of the g term of (3.1 1). 
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Appendix 3 

Let us examine the stationary solution of (3.2). Assume that 

~ ( x ,  I )  = 4 (x )  e+''. 

Then (3.2) becomes 

which can be rewritten as 

(A3.1) 

(A3.2) 

(A3.3) 

This leads to 

($J( 1 ++z)+m(2s 2m +g@)&= 0 (A3.4) 

where we have used the condition that 6 and 4.y both vanish when x + f CO. Integrating 
(A3.4) we find x as a function oft$, but this function is so complicated that we have 
not been able to turn it around to get 4 as a function of x. 
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